1153 Jn5471 988 ppy 2

Fish Guidance Efficiency Studies at Bonneville Dam First and Second Powerhouses-1988

Library Northwest & Alaska Fisheries Center NOAA, National Marine Fisheries Service 2725 Montlake Boulevard E. Seattle, WA 98j j 2

by Michael H. Gessel, Bruce H. Monk, Dean A. Brege, and John G. Williams

January 1989

FISH GUIDANCE EFFICIENCY STUDIES AT BONNEVILLE DAM FIRST AND SECOND POWERHOUSES-1988

By Michael H. Gessel Bruce H. Monk Dean A. Brege and John G. Williams

Annual Report of Research Financed by U.S. Army Corps of Engineers Delivery Order DACW57-87-F-0322

and

Coastal Zone and Estuarine Studies Division National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

January 1989

CONTENTS

INTRODUCTION	1
OBJECTIVE 1 - EVALUATION OF MOD BONNEVILLE DAM SEC Approach Results and Discussion Yearling Fish Subyearling chinook salmon Descaling	IFICATIONS TO IMPROVE FGE AT COND POWERHOUSE2 2 2 8 8 12 13
OBJECTIVE 2 - FGE AND VERTICAL D BONNEVILLE DAM FIE Approach	ISTRIBUTION MEASUREMENTS AT AST POWERHOUSE
CONCLUSIONS	
LITERATURE CITED	
APPENDIX A	23 23 23

INTRODUCTION

At Bonneville Dam First Powerhouse, fish guidance efficiency (FGE) testing with submersible traveling screens (STS) was initially conducted during the early and late portions of the 1981 spring outmigration. Guidance in excess of 70% was observed for all species (Krcma et al. 1982). These results were considered adequate; however, since these tests, further FGE studies at other projects have indicated that FGEs varied considerably from year to year as well as within each field season. Additionally, average FGE measurements on summer migrating subyearling chinook salmon have been less than 50% at McNary Dam (Brege et al. 1988) and John Day Dam (Krcma et al. 1986). Thus, measurements of subyearling chinook salmon FGE during the summer migration were made to provide baseline information prior to completion of the new navigational lock at Bonneville First Powerhouse.

Evaluation of the juvenile bypass and collection system at Bonneville Dam Second Powerhouse began in 1983. The initial FGE estimate of traveling screens was less than 30% for yearling chinook salmon, <u>Oncorhynchus tshawytscha</u> (Krcma et al. 1984). During 1985, streamlined trashracks and a lowered STS increased FGE to > 40%. In 1986, the addition of turbine intake extensions (TIE) improved FGE to over 70% for some tests. In 1987, results from guidance tests indicated that underwater mercury vapor lights could alter the movement of juvenile migrants into and within a turbine intake. Studies in 1988 continued light tests, and initial tests were conducted on the feasibility of using bar screens instead of STSs to improve FGEs.

During the 1988 juvenile salmonid outmigration, NMFS in conjunction with the U.S. Army Corps of Engineers (COE) conducted studies at both Bonneville powerhouses with the following objectives:

- Continue the FGE and vertical distribution testing program at Bonneville Second Powerhouse to evaluate the following modifications/additions for improving FGE and STS effectiveness:
 - a. Turbine intake extensions
 - b. Higher porosity guiding device (bar screen)
 - c. Internal trashrack deflector
 - d. Illuminated trashracks and intake ceiling
- Conduct standard FGE and vertical distribution measurements at Bonneville First
 Powerhouse to provide data comparable to 1981 research and baseline data for late summer subyearling chinook salmon migrants.

In addition to these investigations, a complementary physiological study was conducted to determine if relationships existed between the physiological status of the migrant population and the prevailing FGE estimates. Results from that study will be reported in a separate document.

OBJECTIVE 1 - EVALUATION OF MODIFICATIONS TO IMPROVE FGE AT BONNEVILLE DAM SECOND POWERHOUSE

Approach

Fish guidance and vertical distribution studies were conducted with existing fyke nets and net frames. Principles and guidelines were similar to those used at the Second Powerhouse in 1985, 1986, and 1987 (Gessel et al. 1986, 1987, 1988). A dipbasket collected guided fish from the gatewell; a net frame attached to the guiding device (traveling screen or bar screen) supported nets to collect unguided fish.

FGE was calculated as the gatewell catch (number of guided fish (by species)) divided by the total number of fish estimated to have passed into the turbine intake slot during the test period: $FGE = GW / (GW + GN + FN + CN) \times 100$

GW= gatewell catch GN = gap net catch FN = fyke net catch¹ CN = closure net catch

Three to five replicates of each test condition were planned to provide FGE estimates with confidence intervals of \pm 3.9 to 4.8%, with 250-300 fish of the target species. The desired number of replicates was not always attained because of the variety of test conditions and the relatively short field season. Data for unreplicated tests are presented as possible trend indicators, but they may have large errors.

All FGE tests were conducted with concurrent vertical distribution measurements of fish entering the turbine intakes. The data were used to determine theoretical FGE (TFGE), which was the estimated percentage of guidable fish during a given FGE test. Generally, this included all fish collected from the gatewell down to and including onehalf of the catch from the third net on the vertical distribution frame. To minimize the number of fish captured in the nets, only the center net at each level collected fish, and the number of fish captured was expanded by a factor of three. To estimate TFGE when the internal trashrack deflector was used, fish from the third net and the upper half of the fourth net were included. Dividing FGE by the corresponding TFGE provided an effectiveness measure to compare different test conditions when TFGE estimates varied.

During the period 25 April - 1 May, we conducted a series of vertical distribution measurements in Slots 12A, 12B, 13A, and 13B to determine if vertical distribution varied between adjacent slots with and without a TIE.

¹Net catch levels with only a middle net were expanded by a factor of three.

Fish guidance and concurrent vertical distribution testing occurred during two phases: 1) 2 May to 5 June, targeting yearling chinook salmon and 2) 6 July to 2 August, targeting subyearling chinook salmon. Data for other species were collected as available. [Subyearling chinook salmon were also captured during late May - June. Guidance for these fish was generally higher than that of late summer migrants and approached yearling chinook salmon FGEs (Krcma et al. 1982; Gessel et al. 1988). However, the major portion of the subyearling smolt migration passed Bonneville Dam during the summer; to be consistent with past Bonneville Dam reports, we continued to designate yearling chinook and coho salmon as the early phase fish and subyearling chinook salmon as the late phase fish.]

All tests began at approximately 2000 hours, and generally lasted from 1-2 hours, depending upon fish numbers. Tests during the spring were conducted with a unit discharge of 18,000 cfs. Due to low river flows, late summer tests were conducted at 14-15,000 cfs. Four units (11, 12, 13, and 17 or 18) were operated during all tests. The FGE tests were conducted in Slots 12A and 12B (the majority in 12B, which was equipped with a TIE), while vertical distribution measurements were taken in Slot 13A (also equipped with a TIE).

In conjunction with COE hydroacoustic studies, we also monitored FGE in Unit 17B. The slot was equipped with 30-inch lowered STSs and streamlined trashracks; no TIE was present. Monitoring began on 12 May and ended 1 June. All procedures were identical to standard FGE testing.

Fish condition (descaling) was monitored by examining fish captured in the gatewell. Descaling was determined by dividing the fish into five equal areas per side; if any two areas on a side were estimated to be 50% or more descaled, the fish was classified as descaled.

Eight test series were conducted during the spring outmigration (Table 1). The initial test series during the early phase provided baseline data for FGEs using the best condition from the 1987 field season [30-inch lowered STS, streamlined trashracks, and TIEs in front of alternate Slots (11A, 11C, 12B, 13A, 13C, and 14B)]. The remaining guidance tests used bar screens in place of the STS, internal trashrack deflectors, and various light combinations. The TIEs remained in the alternate pattern for the duration of the studies. The overall porosity of the bar screen was approximately 45% compared to 22% for the STS. The porosity of the bar screen with a porosity plate on the back was approximately 33%.

In some bar screen tests the internal trashrack deflectors were also used. The deflectors were attached to the trashrack at elevation 2.3 m (7.6 ft) (msl) and positioned to overlap and approximate the angle of the bar screen (Fig. 1). To minimize bias that might occur with fish movement between the slots, deflectors were placed in Slots 12A, 12B, and 12C with Slot 12B as the test slot.

For 1988, 250-watt, mercury vapor lights (12-13,000 lumens/light) were mounted on the trashracks and intake ceiling as follows (see Fig. 1):

- 1) Trashrack two lights on the top trashrack section, approximately 2 m from each side and 1 m below the intake ceiling.
- 2) Intake ceiling eight lights in two rows of four lights, each row approximately 2 m from each wall, beginning 0.5 m from the gatewell opening and extending toward the trashrack in 1.5 m increments.
- 3) Bar screen frame two lights approximately 2 m from each side, and recessed approximately 0.6 m into the gatewell.

In addition, three xenon strobe lights producing 15 joules with a flash rate of once every two seconds (duration 2 milliseconds) were placed on the trashrack about 1 m beneath the hinge point of the internal trashrack deflectors (see Fig. 1). To minimize bias, identical light configurations were used in Slots 12A, 12B, and 12C with Slot 12B as the test slot.

Table	1Submersible traveling screen and bar screen fish guiding efficiency	tests conducted at
	Bonneville Dam Second Powerhouse during the 1988 field season.	All testing occurred
	with four turbine units operating (11, 12, 13, and 17 or 18).	

Test series no.	Date(s) of tests	Test unit	Load (kcfs)	Guiding device	Light condition	Internal deflector
1	2,3,4,5	12A	17	Traveling screen	No lights	Out
	Мау	12B		Traveling screen	No lights	Out
2	6,9,10,11 May	12B	17	Bar screen	No lights	Out
3	12,15,16,26 May	12B	17	Bar screen	Intake ceiling lights (4)	Out
4	13,14,17 May	12B	17	Bar screen	No light	In
5	18 Мау	12B	17	Bar screen	Intake ceiling lights (4)	In
6	27,28 May 1 June	12B	17	Bar screen	Intake ceiling lights (8) & trashrack (2)	Out
7	29,30,31 May	12B	17	Bar screen	Gatewell lights mounted on bar screen frame (2)	Out
8	2,3,4,5	12A	17	Bar screen	No lights	Out
	June	12B		Bar screen	No lights	Out
9	6,7,8,9 July	12A	14.5	Bar screen	No lights	Out
	6,7,8,9,14 16,18,19 July	12B		Bar screen	No lights	Out
10	10,11,12,13 15,17 July	12B	14.5	Traveling screen	No lights	Out
11	20,21,22 July	12B	14.5	Bar screen	Flashing lights mounted on trashrack (3)	Out
12	23,24,25 July	12B	14.5	Bar screen	Intake ceiling lights (4) and bar screen frame lights (2)	Out
13	26,27,28 July	12B	14.5	Bar screen	All lights on (15)	Out
14	29,30 July	12B	14.5	Bar screen	No lights perforated plate	Out
15	31 July 1,2 August	12B	14.5	Bar screen	All lights on (15) perforated plate	Out
					Tab I I I I I I I I I I I I I I I I I I I	

because here argued a fourier a subdetablication were present of the definition and the state of the state of the subbecause here himse using of the interest tradeway definitions (see Fig. 1). To minimize because the himse point of the interest tradeway definitions (see Fig. 1). To minimize

Josh Physics Mild and

Figure 1.--Cross-sectional view of a turbine intake with turbine intake extension, lights, and internal trashrack deflector tested at Bonneville Dam Second Powerhouse, 1988.

The vertical distribution, FGE, and STS/bar screen effectiveness results were averaged for each test condition and weighted by the number of fish captured.

Results and Discussion

Yearling Fish

Although yearling chinook salmon was the target species, coho salmon was the predominant species during Series 6, 7, and 8. Guidance figures for yearling chinook and coho salmon were combined in 1987 (Gessel et al. 1988) but separated in earlier reports (Gessel et al. 1985, 1986, 1987). Since previous FGE testing indicated guidance for coho salmon was equal to or slightly higher than yearling chinook salmon (Brege et al. 1988; Krcma et al. 1982), coho and chinook salmon results were not combined in this report.

Tests to determine TIE vs non-TIE slot effects on vertical distribution were conducted from 25 through 29 April. The mean TFGE (n = 4) was significantly lower in TIE versus non-TIE slots, 67.0 (S.E. = 4.5) and 85.6% (S.E. = 2.7), respectively (t = 3.5, p < 0.05). Guidance tests conducted from 2 to 5 May (Series 1) in Slots 12A and 12B showed similar differences. The mean FGE (n = 4) was significantly lower in TIE versus non-TIE slots, 31.2 (S.E. = 0.8) and 54.2% (S.E. = 2.7), respectively (t = 8.2, p < 0.05). When FGE and STS effectiveness for Slots 12A and 12B were combined, the mean values were 45.1 (S.E. = 1.9) and 69.8% (S.E. = 3.7), respectively. These results were comparable to but slightly lower than 1987 combined Slot 12A and 12B results when four turbines were operated (47.3 and 70.5%, respectively) (Gessel et al. 1988). Tests in 1987, with seven turbine units operating, had combined FGE and STS effectiveness estimates of 68 and 80%, respectively (Gessel et al. 1988). Similar test conditions were not repeated in 1988. (Appendix Tables 1 and 2 provide details on fish recoveries).

Test series	Number of reps.	Salmon	Guiding device	Lights	FGE	Guidir effecti (mean	ng device veness) (S.E.)
1.	4	Yearling	STS⁵	OFF	31.2	48.2	1.8
2	4	Yearling	BS	OFF	47.8	78.6	3.3
3	4	Yearling	BS	ON	56.3	86.6	5.6
4	3	Yearling	BS	OFF	53.2	75.0	4.8
5	1	Yearling	BS	ON	46.6	74.2	
6°	3	Coho	BS	ON	57.4	83.7	6.0
7	3	Coho	BS	ON	59.4	88.2	2.2
8	4	Coho	BS	OFF ^d			
9	8	Subyearling	BS	OFF	32.9	60.4	4.1
10	6	Subyearling	STS	OFF	28.9	52.2	5.5
11	3	Subyearling	BS	ON	25.1	60.3	4.9
12	3	Subyearling	BS	ON	19.2	57.1	4.2
13	3	Subyearling	BS	ON	34.3	88.8	18.5
14	2	Subyearling	BS	OFF	12.2	39.0	6.9
15	3	Subyearling	BS	ON	16.9	83.7	16.0

Table 2.--Results of the fish guiding efficiency tests conducted at Bonneville Dam Second Powerhouse during the 1988 field season.

* Test series numbers correspond to Table 1, this report.

- Ь Submersible traveling screen.
- ^c Bar screen.
- ^d Small numbers of fish (<100 per replicate) for this test. One replicate with <200 fish.

The FGE and guiding device efficiency with bar screens were substantially higher (Series 2, 47.8 and 78.6%, respectively) than with STSs (Series 1, 31.2 and 48.2%, respectively). The 30.4% increase in guiding device efficiency of the bar screen compared to the STS was highly significant (t = 8.1, p < 0.01).

The use of lights in conjunction with the bar screen (Series 3) appeared to provide an additional increase in both FGE and screen effectiveness, however, the effectiveness values were not significantly different (t = 1.2, p > 0.05) (Fig. 2). There was a redistribution of fish in the fyke nets when the bar screen and associated lights were used (Fig. 3.). The bar screen increased the gatewell catch and decreased all net catches with the exception of a small increase in the gap net catch (Fig. 2). We believe the higher porosity of the bar screen increased the flow above the area of the guiding device and fish did not as actively reject the area as they did with the STS. However, while the addition of the internal deflector increased the amount of area intercepted by the guiding device, it did not increase guidance, so that the effectiveness was slightly lower (Tests 2 & 3 versus 4 & 5, Tables 1 and 2). We hypothesize that in an attempt to increase the area intercepted, flows were slightly changed and some fish rejected the area.

The FGEs and bar screen effectiveness values for chinook and coho salmon during Series 3, 6, and 7 were nearly identical under similar conditions, 56.3, 57.4, and 59.4% and 86.6, 83.7, and 88.2%, respectively (Table 2). This indicated that chinook and coho salmon guidance could be combined without biasing results.

The mean FGE (n = 4) for yearling chinook salmon with an STS was considerably lower in Unit 17 than in Unit 12 (15.6 versus 31.2%, respectively). No vertical distribution measurements were made at the north end of the powerhouse, thus comparative STS effectiveness values between the two units were not made. Although these tests were conducted during different time periods (13-16 May and 2-5 May,

Figure 2.--Spring chinook salmon fish guidance efficiency (FGE) and effectiveness with submersible traveling screen (STS), bar screen (BS), lights (Lts), and internal trash rack deflector at Bonneville Dam Second Powerhouse, 1988.

Figure 3.--Distribution of juvenile spring chinook salmon during fish guidance efficiency tests at Bonneville Dam Second Powerhouse, 1988.

respectively), mean TFGE values at the south end of the powerhouse were nearly equal, 65.0% for the early tests and 63.8% for the latter. Since both units had streamlined trashracks and 30-inch lowered STSs, but Unit 17 did not have the benefit of the TIE configuration, we suspect the FGE difference was real and a direct result of no TIEs at the north end of the powerhouse.

Subyearling chinook salmon

Both bar screen and STS tests were conducted during the summer subyearling chinook salmon outmigration (Series 9 through 15, Table 1). None of the test conditions, however, provided statistically significant improvements. The FGE and guidance efficiency results with the bar screen, 32.9 and of 60.4%, respectively, were slightly higher than those with the STS, 28.9 and 52.2%, respectively (Table 2). During the summer, the only substantial variation in guidance device effectiveness occurred when all lights were used (Series 13 and 15) (Table 2). Overall guidance, however, decreased on the last series because the fish were at greater depths. Further tests with lights will be necessary to provide conclusive evidence as to their benefits.

The TIE vs non-TIE slot effect was not as apparent during bar screen tests with subyearling chinook salmon as it was during earlier tests with yearling chinook salmon and the STS. During the first four days of Series 9 (Table 2), FGEs were compared between Slots 12A and 12B. The mean FGEs (n = 4) in TIE (Slot 12B) and non-Tie (Slot 12A) slots were 43.9 (S.E. = 4.5) and 46.2% (S.E. = 4.0), respectively, a difference of only 2.3%. During the early phase this difference was over 20%. The surface vortex between slots created by the alternate TIE configuration may not have been as important because the subyearling chinook salmon were distributed much lower in the water column during the summer months. The change in the porosity of the bar screen may also have been a factor.

Descaling

The mean descaling rates on yearling chinook salmon sampled from gatewells where vertical distribution measurements and STS tests were conducted (excluding samples less than 100 fish and using same-day comparisons) were 5.2 and 4.0%, respectively, whereas descaling rates on yearling chinook salmon sampled from gatewells where vertical distribution measurements and bar screen tests were conducted were 7.0 and 18.1%, respectively. For subyearling chinook salmon, mean descaling rates on fish sampled from gatewells during vertical distribution measurements and STS and bar screen tests were 4.5, 4.6, and 13.3%, respectively. The bar screen, while significantly more effective in guiding fish, also increased descaling 2.5 to 3-fold over background levels. Our limited tests to determine if the addition of perforated plate to to reduce the porosity of the bar screen would also reduce descaling on subyearling chinook salmon were inconclusive. Although absolute descaling decreased slightly, comparisons to background levels were not possible as less than 100 fish were captured in the gatewell where vertical distribution was measured. We expected a larger descaling decrease with the perforated plate. Additional testing with alternate screen angles and perforated plate are necessary to develop means to decrease descaling for yearling and subyearling fish.

OBJECTIVE 2 - FGE AND VERTICAL DISTRIBUTION MEASUREMENTS AT BONNEVILLE DAM FIRST POWERHOUSE

Approach

Procedures used to measure FGE and vertical distribution at the First Powerhouse were identical to those used at Bonneville Dam Second Powerhouse. Dip-baskets collected fish from the gatewell; net frames collected fish from the turbine intake.

Measurements were taken during the spring (30 May - 6 June) and late summer (6 July - 27 July) outmigrations, with subyearling chinook salmon as the targeted species for both periods. Data for other species were collected as available. All data were collected in Unit 3B with approximately one vertical distribution measurement for every three FGE measurements. Concurrent FGE and vertical distribution measurements were not conducted since previous data indicated vertical distribution was consistent (Krcma et al. 1982). Also, alternating the measurements minimized the number of fish sacrificed in the nets.

A standard elevation STS was used for all FGE measurements and TFGE was estimated to include all fish from the gatewell down to and including fish in the second net level of the vertical distribution frame. Standard unit operation prevailed with all available units operating at full load. Unit flow ranged from 13,500-15,000 cfs in the spring to 11,900-13,800 cfs in the late summer.

Results and Discussion

During the first series of FGE and vertical distribution measurements (30 May through 6 June), fewer than 100 subyearling chinook salmon were captured on all nights but 2 June. This was fewer fish than we consider desirable, but we feel the results indicated the range of FGE and TFGE that occurred for late spring migrating subyearling chinook salmon at the First Powerhouse. The FGEs for the five replicates ranged from 32.9 to 60.5%, with a weighted mean of 40.7% (S.E. = 6.2). The TFGEs for the three vertical distribution replicates ranged from 62.5 to 100% and averaged 74.3%. [Recapture information for all species is detailed in Appendix 3 and 4].

Although the target species for the first series of tests was subyearling chinook salmon, large numbers of coho salmon (> 250) were captured during one FGE test and two vertical distribution measurements. The FGE on 1 June for coho salmon was

56.8%. On 30 May and 5 June, TFGE for coho salmon was 75.6 and 84.4%, respectively.

During the second series of vertical distribution measurements (6 July through 27 July), TFGE for late summer subyearling chinook salmon ranged from 10.4 to 30.8% with a weighted mean of 21.2% (S.E. = 5.8). An average of 47.6% of these fish were captured in Nets 4 and 5, well below the level intercepted by a standard STS (Fig. 4). The corresponding FGE for subyearling chinook salmon ranged from 5.5 to 28.1% with a weighted mean of 11.4% (S.E. = 2.0) (Fig. 5). The STS-effectiveness for the entire period was 53.8%.

Descaling rates for subyearling chinook salmon collected in the gatewell during FGE tests ranged from 0 to 5.4% with a weighed mean of 1.7% (S.E. = 0.4). Because of low numbers of fish collected in the gatewell, no descaling rate was calculated during vertical distribution measurements.

The FGEs during the late spring were much lower than previous values measured for subyearling chinook salmon at the First Powerhouse (30 April to 6 June, 1981) where FGE averaged 71.5% (Krcma et al. 1982). We do not know the reason as the average vertical distributions were the same this year as in 1981. Lower FGE values in the summer were not as surprising because studies conducted at McNary and the Dalles Dams on the Columbia River indicated that guidance for subyearling chinook salmon approaches that for yearling chinook salmon in early June but decreases significantly by late July (Krcma et al. 1985; Monk et al. 1986). In 1987, Gessel et al. (1988) also observed similar results at Bonneville Dam Second Powerhouse where FGE for subyearling chinook salmon was as high as 62% in the spring but decreased to 17.3% (same unit and same test conditions) by 16 July.

> Symme & — Wash starkings all advertised from restarts with grantering and the advertised and restarting at Brancewille Deau Firms Forward-subject, 1988.

Figure 5.--Fish guidance efficiency and theoretical fish guidance efficiency of subyearling chinook salmon at Bonneville Dam First Powerhouse, 1988.

A comparison of vertical distribution for subyearling chinook salmon in July showed fish entering the Second Powerhouse were higher in the water column than those entering the First Powerhouse. Weighted average gatewell catches during vertical distribution tests for 11, 12, 20, and 27 July were 3.1 (S.E. = 0.7) and 14.1% (S.E. = 1.7) for the First and SecondPowerhouses, respectively (Fig. 6).

In July, there was a similar decrease in TFGE for subyearling chinook salmon at both powerhouses; 20% at the First Powerhouse and 23% at the Second Powerhouse (Fig 7). A decline in FGE and TFGE has also been noted at other dams on the Columbia River and has been attributed to: 1) changing environmental factors such as water temperature, turbidity, or flow; or 2) changing compositions of the migrating population (Krcma et al. 1985; Monk et al. 1986; Brege et al. 1988).

Predation by northern squawfish, <u>Ptychocheilus oregonensis</u>, may also have contributed to the low FGE observed during the summer for subyearling chinook salmon. Squawfish have been identified as a major predator of juvenile salmonids in the Columbia River, especially in the vicinity of dams (Uremovich et al. 1980; Gray et al. 1986). We speculate that during the summer months, squawfish metabolism was increased by higher water temperatures. This, in turn, caused an increase in feeding activity which was enhanced by a decrease in turbidity that made the prey more visible. At Bonneville Dam, Uremovich et al. (1980) estimated that 3.8 million or 11% of the downstream migrant salmonids entering Bonneville pool were eaten by squawfish in one season, and 65% of this predation occurred between 20 July and 16 August. This may have lowered FGE of subyearling chinook salmon by reducing their numbers in the upper water column or, indirectly, by influencing the juveniles to sound in an effort to reduce their predation risk by seeking areas where they were less visible.

Figure 6.--Weighted average vertical distributions of subyearling chinook salmon at Bonneville Dam First and Second Powerhouses, July 1988.

Figure 7.--Comparison of the theoretical fish guidance efficiency of subyearling chinook salmon at Bonneville Dam First and Second Powerhouses, 1988.

CONCLUSIONS

Second Powerhouse

- Non-TIE slots within the staggered TIE configuration have significantly higher FGE and TFGE than TIE slots, 47.8 and 86.6% versus 31.2 and 48.2%, respectively.
- 2) Mean FGE and STS effectiveness for yearling chinook salmon with the STS was significantly lower than with bar screens, 31.2 and 48.2% versus 47.8 and 78.6%, respectively.
- 3) Mean FGE and STS effectiveness for subyearling chinook salmon with the STS was lower than with bar screens, 28.9 and 52.2% versus 32.9 and 60.4%, respectively, but the difference was not significant.
- 4) Illuminating trashracks and intake ceilings sometimes, but not consistently, increased FGE.
- 5) The internal trashrack deflector in conjunction with the bar screen did not improve FGE.
- 6) The descaling rate on both yearling and subyearling chinook guided by the bar screen was approximately 2.5 to 3 times higher than that found in fish captured during vertical distribution measurements.
- 7) The TIEs at the south end of the powerhouse apparently improved FGE (Unit 12) compared with measurements taken at the north end (Unit 17) of the powerhouse where no TIEs were present. No direct measurements of STS effectiveness between the two sites were made.

First Powerhouse

- Between 6 and 27 July, the FGEs and TFGEs for subyearling chinook salmon averaged 11.4 and 21.2%, respectively.
- 2) As seen at other dams on the Columbia River, summer subyearling chinook salmon passing through the powerhouse guided poorly and apparently moved to greater depths in the water column as the migration proceeded.

LITERATURE CITED

- Brege, D.A., W.T. Norman, G.A. Swan, and J.G. Williams.
 - 1988. Research at McNary Dam to improve fish guiding efficiency of yearling and subyearling chinook salmon, 1987. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fish. Cent., Seattle, WA. 34 p. plus Appendix. (Report to U.S. Army Corps of Engineers, Contract DACW68-84-H-0034).
- Gessel, M.H., L.G. Gilbreath, W.D. Muir, and R.F. Krcma.
- 1986. Evaluation of the juvenile collection and bypass systems at Bonneville Dam 1985. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fish. Cent., Seattle, WA. 63 p. plus Appendix (Report to U.S. Army Corps of Engineers, Contract DACW57-85-H-0001).
- Gessel, M.H., L.G. Gilbreath, W.D. Muir, B.H. Monk, and R.F. Krcma.
 1987. Evaluation of the juvenile salmonid collection and bypass systems at Bonneville Dam - 1986. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish.
 Serv., Northwest and Alaska Fish. Cent., Seattle, WA. 53 p. plus Appendix. (Report to U.S. Army Corps of Engineers, Contract DACW57-86-F-0270).
- Gessel, M. H., R. F. Krcma, W.D. Muir, C.S. McCutcheon, L.G. Gilbreath, and B.H. Monk. 1985. Evaluation of the juvenile collection and bypass system at Bonneville Dam, 1984. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fish. Cent., Seattle, WA. 48 p. plus Appendixes (Report to U.S. Army Corps of Engineers, Contract DACW57-84-F-0181).
- Gessel, M. H., B. H. Monk, J. W. Williams.
- 1988. Evaluation of the Juvenile Salmonid Collection and Bypass Systems at Bonneville Dam, 1987. U. S. Dep. of Commer., Natl. Mar. Fish Serv., Northwest and Alaska Fish. Cent., Seattle, Wash. 35 p. plus Appendixes (Report to the U.S. Army Corps of Engineers, Contract DACW57-87-F-0322).
- Gray, G. A., D. E. Palmer, B. L. Hilton, P. A. Connolly, H. C. Hansel, and J. M. Beyer. 1986. Feeding activity, rate of consumption, daily ration and prey selection of major predators in John Day Reservoir. U. S. Fish and Wildlife Service, Seattle National Research Center, Willard Field Station, Cook, Wash. 118 p. plus Appendixes. (Report to Bonneville Power Administration, Contract DE-AI-84BP34796).
- Krcma, R. F., D. A. Brege, and R. D. Ledgerwood.
- 1986. Evaluation of the rehabilitated juvenile salmonid collection and passage system at John Day Dam - 1985. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fish. Cent., Seattle, WA. 25 p. plus Appendix. (Report to U.S. Army Corps of Engineers, Contract DACW57-85-H-0001).
- Krcma, R. F., D. A. DeHart, M. H. Gessel, C. W. Long, and C. W. Sims. 1982. Evaluation of submersible traveling screens, passage of juvenile salmonids through the ice trash sluiceway, and cycling of gatewell orifice operation at the Bonneville First Powerhouse, 1981. NOAA, NMFS, Northwest and Alaska Fisheries Center, Seattle, WA.

(Report to U.S. Army Corps of Engineers, Contract DACW57-81-F-0342).

Krcma, R. F., M. H. Gessel, W. D. Muir, C. S. McCutcheon, L. G. Gilbreath, and B. H. Monk. 1984. Evaluation of the juvenile collection and bypass system at Bonneville Dam, 1983. U.S. Dep. of Commer., Natl. Oceanic and Atmos. Admin., Natl. Mar. Fish. Serv., Northwest and Alaska Fish. Cent., Seattle, WA 56p. plus Appendix (Report to U.S. Army Corps of Engineers, Contract DACW57-83-F-0315). Krcma, R. F., G. A. Swan, and F. J. Ossiander.

1985. Fish guiding and orifice passage efficiency tests with subyearling chinook salmon, McNary Dam, 1984. U.S. Dep. of Commer., Natl. Mar. Fish Serv., Northwest and Alaska Fish. Cent., Seattle, Wash. 19 p. plus Appendixes. (Report to the U.S. Army Corps of Engineers, Contract DACW68-84-H-0034).

Monk, B. H., W. D. Muir, and R. F. Krcma.

1986. Studies to evaluate alternative methods of bypassing juvenile fish at The Dalles Dam - 1985. U.S. Dep. of Commer., Natl. Mar. Fish Serv., Northwest and Alaska Fish. Cent., Seattle, Wash. 33 p. plus Appendixes (Report to the U.S. Army Corps of Engineers, Contract DACW57-85-H-0001).

Uremovich, B. L., S. B. Cramer, C. F. Willis, and C. O. Junge.

1980. Passage of juvenile salmonids through the ice and trash sluiceway and squawfish predation at Bonneville Dam, 1980. Oregon Department of Fish and Wildlife, Portland, Oregon, (Report to the U.S. Army Corps of Engineers, Contract DACW57-78-C-0058).

sees, is, if, 0 if. Monh, J. W. Williams. Direct Collection of the downalis Solitonics Collection and Brites Systems an Demonstile Come Unit. U. M. Die downalis Solitonics Collection and Brites Pate Come Unit. U. M. Die Areasile State Pate State Com. Physican and Marke Mate

Group C. A., D. B. Faliner, R. L. Bitten, F. A. Gennelly, H. C. Hennel, and J. M. Derrer, 1994. Facing attivity, rate of encouption daily retire and grav selecters of male: mediative in John Day Reserver. D. S. Hole and Wildler, Henler, Health Statemal Interaction Control, Willard Field Station, Cold. Wash, 110 p. and Mineralizer, Physica 19 December 10, proceeding the Stateman District of each retreation from the December 1. J. Stateman Stateman, Neurophysical Stateman.

- Comme, U. F., D. & Derror and R. D. Ledgewood, their theoremistics of the related for only and end of the state and there are fully they flow their the U.S. Disk of Correct, that County and Americ Aduria, Full for their they are form of Equipment and Market Field (1997), 7.8 (20.5) ping formation for the test to U.S. at the County of Equipment Conference Conference 100(1), 7.8 (20.5) ping formation.
- Kronn, A.F. D. & Loddink, M. H. Ghuid, C. W. Long, and C. W. dinter treat. Nuclearity of pointernals introduce transmition meaning parameter of investigation and international alternation from the treats above way and verifying of quarterial and a strengthen at the Borneralis Front Presentations, 2040. Neurological parameters and alternation Contexts. Sentific, WA (Insured to U.S. Anny General Insurance, Contexts Editorial Editorial Contexts).
- Komme R. F., M. H. Frind, W. R. Minn, C. S. McLutcheso, L. O. Ollhandi, and R. R. Monte, 1994. Realization of the proceeds collection well heppen systems in Barrawille Date, 1981, 18 Dec. al. Content. Nucl. Solution and Atoms Adams, Plat. Mar. Flab. Surv. Northwest and alsola First. Unit. Solution, WA 56p alors Angendia Heppen to U.S. Army Corps of Fractions T. Content. ACWT. 2014;1515.

APPENDIX A

Dat	a Ta	ables	3
_			

				Dat	a Tar	nes				

					I	Date (Tes	t Uni	t) and	(series	numbe	er)"					
	_	21	<u>May (1</u>	2A) (1)	_	-	2 M	lav (12	B) (1)				3 M	av (12	A) (1)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO		SC	YC	ST	CO	SO
Gatewell	1	372	25	75			131	13	29	-			386	50	116	1
Gap Net		10	***				2		3 44 (0440	20	1		
Closure	-	54	5	6		2	71	1	16			-	88	3	13	
First		33	2	100		: 	27		3				21	3	चत्तः :	577 6
Second		63	9	9			71	3	1				108	3	21	see):
Third	See.2	57					71	3	6				72		18	
Fourth	577.0	18		3			27						18			
Fifth							6	-	: /				15		-	3 41 3
Totals	0	607	41	93	0	2	406	20	55	0		0	728	60	168	1
		2.1	(1)				4.14	(10					4 14	(10		
Location	SC	YC	ST ST	CO	80	SC	YC	ST	$\frac{c_0}{c_0}$	80		SC	YC	ST	CO	
		10					10				_		10	51		
Gatewell		147	10	33			307	60	53	2			114	12	15	
Gap Net		1		-			8	2	1			-	4	1		
Closure		80	8	2			54	5	8			1.000	57	9	4	0.000
First		25	1	4			18	12					29	6	2	
Second		83	4	4			93	6	10			3	177	6	6	
Inird	-	73	5	10		3	60	3	12	-		-	40	2	2	
Fourth		3		(***)) 2414 V			24	3	3	_			21 6	3	3	
FIIII		0										-	0			
Totals	0	463	28	53	0	3	564	91	77	2		3	356	44	38	0
		5 1	(1)	24) (1)			5 M	[a= (19	D) (1)				6 16	aw (10	D) (9	
Location	SC	YC	ST ST	CO	SO	SC	YC	ST	CO	SO		SC	YC	ST	CO	SO
Gatewell		294	27	91			117	7	33		_		190	25	44	
Gap Net	1	14	2	1			2		2				10		1	
Closure		60	4	7			65	7	8				31	3	7	
First	-	45				**	35	3	5				27	3	***	2 44 32
Second	-	72	6	21			73	7	12			++	64	6	3	-
Third		93	6	3		1	71	8	5				35	3	5	
Fourth	6	27		3			33		6			**	30		3	
Fifth	-	3					12	-		-			9		3	2442
Totals	7	608	45	1 26	0	1	408	32	71			0	396	40	66	0
		91	<u>May (1</u>	<u>2B) (2)</u>		_	<u>10 N</u>	lay_(12	<u>2B) (2)</u>				<u>11 M</u>	[av (1	2 <u>B) (</u> 2	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO		SC	YC	ST	CO	SO
Gatewell	1	98	26	49	4		74	18	44				98	20	75	7
Gap Net	-	13	4	4			12	2	5				19		12	
Closure	1	13	2	6			14	2	1	-		1	19	4	14	1
First		3	3				3		6				6	3	6	
Second		29	6	10	3	3	32	6	5			1	34	5	18	2
Third	1	19	2	6	2	**	22	1	7			1	17	2	10	8
Fourth	+	9	6				12		3				18		3	3
Fifth	्ततः			200			3									
Totals	3	184	49	75	9	3	172	29	71	0		3	211	34	138	21

Appendix Table 1.--Numbers of fish collected in the individual replicates of FGE tests at Bonneville Dam Second Powerhouse, 1988 (tests conducted in July and August captured only subyearling chinook salmon).

Appendix Table 1.--Continued.

Date (Test Unit) and (series number)*

		10 1	Mar (1	00) (2)			12 1	Mar (1	2D) (4)			14.1	Ann (12B)	(4)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
		0.01	F.4	101	00		1.45	00	007			1.00	F 1	100	CE
Gatewell	2	221	54	191	23	5	145	96	227	33	5	162	51	136	60
Gap Net	1	12		8			15	4	10	5		21	1	8	9
Closure		26	10	9	15	1	10	16	12	2	1	14	8	1	6
First		15		6	3		3	3	3	9	-	-	6		3
Second	1	42	12	18	18	5	35	20	26	13	2	31	8	21	18
Third	1	26	8	18	9		30	21	41	16	1	18	4	12	11
Fourth	3	24	12	9	6		21	6	18	3	6	9	3	6	3
Fifth		3					6	-	9	-				3	
Totals	8	369	96	259	74	11	265	166	346	81	15	255	81	193	115
		15.1	Mar. (1	2D) (2)	CHE"		16.1	Mar (1	2D) (2)			17 1	Ann (1	19D) (4
Location	20	VC	OT OT	<u>201 (0</u>	90	20	VC	QT QT	<u>201 (01</u>		20	VC	QT	CO	90
Location	30	IC	51	co	30	ac	ю	51	co	30	30	IC	51	00	30
Gatewell Can Not	-	94	27	165	38	1	192	61	309	47	1	90	63	112	41
Gap Net		0		D	3	1	9	10	14	14	1	17	1	10	4
Closure		13	2	8	0	1	20	10	34	14	1	17	8	12	4
First	-		3	17			10	9	3					3	9
Second	2	23	10	10	23	3	40	20	40	30	2	49	23	24	32
Inira	1	31	13	12	21		29	14	34	20	2	30	18	19	10
Fifth	-	6 3	3	12	12		6	9	6	-		18	3	15	9
Totals	3	178	54	219	103	6	334	129	449	124	7	226	124	193	117
		18 1	May (1	<u>2B) (5)</u>		101.13	26 1	May (1	2B)_(3)		10.10	27 N	lay_(1	2B) (6)
Location	SC	YC	ST	CO	SO	SC	YC	ST	СО	SO	SC	YC	ST	CO	SO
Gatewell	6	82	29	62	41	29	20	42	143	34	12	29	21	171	21
Gan Net	-	8		2	4	4	-3	1	12	1	1		1	5	2
Closure	42	5	9	3	12	3	3	5	11	5	- C	1	2	7	5
First	10	ğ		0	6	6	3	3	1	9		å	-	á	0
Second		32	20	14	43	7	5	18	15	15	0	3	15	19	20
Third		10	14	7	27	7	12	14	11	14	4	7	6	10	17
Fourth		21	3		21	15	0	14	19	14	3	é	2	19	11
Fifth				-	3		-	-		-					
Totals	6	176	75	88	157	71	55	86	210	81	29	52	48	247	74
		28	May (1	2B) (6)			29	May (1	2B) (7)			30 N	fay (1	2B) (1)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
						-			0.70						
Gatewell	16	20	13	117	2	9	22	21	273	9	10	15	18	226	5
Gap Net	3	1	1.000	14	2	4	4		14	1	4	2	1	19	1
Closure	1		1	13	1	2	4	6	40	4	4	5	2	36	3
First				6					9	9				9	
Second	2	6	6	25	3	8	4	1	33	10	3	4	4	44	6
Third	2	9	3	27	7		2	5	29	4	3	3	2	39	2
Fourth	6	6		36	3		6	100	24	3	6		3	33	9
Fifth		••	**	3	**				3	1	-			6	
Totals	30	42	23	241	18	23	42	33	425	40	30	29	30	412	26

Appendix Table 1.--Continued.

						(105		,	(501101		-,				
Location	SC	31 N YC	May (1 ST	<u>2B) (7)</u> CO	SO	SC	1 J	une (12 ST	<u>B) (6)</u> CO	SO	SC	<u>2 Ju</u> YC	<u>ne (12</u> ST	<u>B (8)</u> CO	SO
			_			No.	1.5			08	02	11			
Gatewell	11	12	15	186	19	18	13	10	55	1	44	11	15	42	5
Gap Net	3	1	1	14	1	3	1		6		6	4		6	1
Cloeure	3	3	3	26	3	2		3	7	1	15	1		6	6
First		3		6	1.11				3		6		3	3	
Second	6			30	6	18	3	3	24		27	3	6	12	6
Third			9	18	12	6			9	3	12	3	3		9
Fourth	3	3		21	12	21	3	9	6		3				3
Fifth	3	2 - 2		15				-	-	-	-			-	
Totals	29	22	28	316	53	68	20	25	110	5	113	22	27	69	30
		2.1	une (1	24) (8)			3.1	ne (12]	B) (8)			3 .Im	ne (12)	A) (8)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO
Gatewell	52	14	13	47	15	23	6	10	34	4	23	5	21	53	3
Gap Net	10	2	2	9		14			8		10			14	1
Closure	9		7	8	5	4		6	8	1	9			7	1
First	9	6		6	9	1222			9		6			12	
Second	30	14	3	9	9	9	100	12	6	3	9		15	24	3
Third		9	3	3		12		6	3	3	9	3	9	15	6
Fourth	21		6	3		6			-	6	3			15	3
Fifth				-		-		-	3	-	-		3		
Totals	131	32	34	85	38	68	6	34	71	17	69	8	48	140	17
		4 J	une (1	2B)_(8)			4 Ju	ine (12	A) (8)			<u>5</u> Ju	ne (12)	<u>B) (8)</u>	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST	co	SO
Gatewell	12	8	14	38	16	14	12	21	35	19	18	10	26	66	9
Gap Net	7	2		3		6	2	1	6		5	1		19	3
Closure	9	3	1	10	4	8	-	7	5	1	5	3	5	15	3
First	3		6	3	3		3	6	3		-	-	3	-	
Second	6	3	3	6	12	9	9	15	3	12	6		9	15	12
Third	-		3		9	12	12	6	12	3	12	3	6	9	
Fourth				12	6				9	6	3	6		3	3
Fifth				-		3			3	-	-	-		3	
Totals	37	16	27	60	50	52	38	56	76	41	49	23	49	130	30
Location	80	5 J	une (1)	<u>2A) (8)</u>	80										
	50	10	51		_										
Gatewell	20	19	34	59	8										
Gap Net	3			0	2										
Cloeure	1	Z	1	9	3										
First	3	3		9											
Second	15	6	12	6	9										
Third	9	3	9	6											
Fourth	9		3	6	6										
Fifth	-			-											
Totals	66	33	59	100	23										

111 34 00 33

27

Appendix Table 1.--Continued.

Date (Test Unit) and (series number)" 6 July (12B) (9) 7 July (12A) (9) 6 July (12A) (9) SC Location SC YC ST CO SO YC ST CO SO SC YC ST CO SO 474 465 200 Gatewell 124 Gap Net 98 35 Closure 70 82 33 First 48 39 15 Second 129 39 66 117 39 Third 75 Fourth 48 66 12 Fifth 9 15 -Total 957 941 400 9 July YC 7 July (12B) (9) 8 July (12A) (9) (12B) (9) SC YC ST SO SC ST CO SC SO CO YC SO STCO Location Gatewell 254 92 89 Gap Net 43 13 17 Closure 54 16 20 First 15 15 ---Second 66 18 27 Third 75 30 27 Fourth 42 21 9 Fifth 12 3 ---Total 543 208 204 9 July (12A) (9) 9 July (12B) (9) 10 July (12A) (10) Location SC YC ST CO SO SC YC ST CO SO SC YC STCO SO Gatewell 137 166 95 Gap Net 24 58 4 Closure 34 79 39 First 36 33 36 Second 75 111 132 Third 48 84 126 Fourth 30 33 63 Fifth 6 9 12 Totals 390 533 547 12 July (12B) YC ST CO <u>13 July</u> YC (12B) ST CO (<u>10)</u> D SO (<u>10)</u> SO July (12B) (10) YC ST SC SC Location SC CO CO SO Gatewell 141 295 216 Gap Net 9 9 15 Closure 70 130 67 First 39 69 30 Second 63 150 75 54 Third 99 129 Fourth 60 78 27 Fifth 21 15 3 Totals 502 875 487

Appendix Table 1.--Continued.

						Date (Tea	t Uni	t) and	l (seri	ies num	ber)*			
	_	14 Ju	ulv (1	2B) (9)		15 J	<u>ulv (1</u>	<u>2B) (</u>	10)	-	16 July	(12B) (9	0
ocation	SC	YC	ST	co	so	SC	YC	ST	CO	SO	SC	YC	STCO	SO
Gatewell	124					118					81			
Sap Net	32					10					16			
Closure	38					57					48			
First	42					36					48			
Becond	96					96					189			
Third	96					90					180			
Fourth	30					57					156			
Fifth	-					6					48			
Total	458					470					766			
	100	17 J	uly (1	(2B)	10)		18 J	uly (1	2B) (9)		19 July	(12B) (9)
ocation	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	STCO	SO
Gatewell	51	-	1815		-	161					120		-	
Gap Net	3					28					28			
Closure	30					44					34			
irst	15					42					21			
Becond	54					150					72			
Third	60					129					45			
Fourth	54					72					9			
Fifth	18					30					6		1.1	
Totals	285					656					335			
		20 J	ulv (1	(2B)	11)		21 J	ulv (1	2B) (11)		22 July	(12B) (11)
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST CO	SO
Catowoll	86					191		21			70	10	100	Contraction of the local division of the loc
Jap Not	18					21					16			
Tomme	29					20					10			
lizet	10					97					22			
locond	51					51					21			
Third	79					79					75			
Founth	10					66					10			
Sigh	40					00					22			
inn	9					9					33			
Total	334					411					393			
		23 J	ulv (1	<u>2B) (</u>	12)		24 J	<u>ılv (1</u>	<u>2B) (</u>	12)		<u>25 July</u>	<u>(12B)</u> (12)
ocation	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	SC	YC	ST CO	SO
Jatewell	89					90					114			
Fan Net	13					12					15			
losure	48					41					40			
lirst	18					3					30			
lacond	123					87					90			
bird	153					120					72			
Tourth	120					108					36			
Neh	36					30					18			
11011	00					03					10			
Tetal	800					509					415			
TOTAL	000					308					410			

Appendix Table 1.--Continued.

						Date (Tea	t Unit) and	1 (serie	s nun	lber)				
		26 J	uly (1	2B) (13)		27 July ()	2B) (13	3)			28 July	(12B)	_(13)
Location	SC	YC	ST	CO	SO	SC	YC ST	CO	SO		SC	YC	STCC) SO
Gatewell	193					82	4.00	114.4		ALC: N	111	and a		
Gap Net	11					10					8			
Closure	60					39		Direction of the			42			
First	18					6					12			
Second	33					81					69			
Fourth	40					90					20			
Fifth						24					27			
Totals	384					377				;	365			
		29 J	uly (1	<u>2B) (</u>	14)		30 July (1	2B) (14	1			31 July	(12B)	(15)
Location	sc	YC	ST	CO	so	SC	YC ST	CO	so		sc	YC	STCC) SO
Gatewell	106					86					81			
Gap Net	5					5					5			
Closure	78					74					43			
First	36					42					36			
Second	159					186					123			
Third	237					225					159			
Fourth	129					162					183			
Fifth	21					24					33			
Totals	771					804				Mr.	363			
							1000		_					
Location	SC	YC	ST	CO	SO	SC	YC ST	CO	5)					
Doodanon	00	10	UI I	00	00	50	10 01	00	50					
Seet Pro-		· · · ·	100		10.0	100	100	Contract of Contract						
Catowell	52					70								
Gap Net	1					5								
Closure	25					42								
First	12					27								
Second	27					84								
Third	36					72								
Fourth	30					42								
Fifth	9					3								
	100					0.45								
Totals	192					345								

"Test numbers correspond to those in Table 1, this report. SC = Subyearling chinook salmon YC = Yearling chinook salmon ST = Steelhead CO = Coho salmon SO = Sockeye salmon

Appendix Table 2.	Vertical	distribution	n data	for yearlin	g and	subyearling	chinook	salmon	and	coho
	salmon,	collected a	t Bonn	eville Dam	Secon	d Powerhou	se during	g the 19	988 fi	eld
	season.						- A.			

				YEA	RLING CI	HINOOK S	BALMON			
Test Unit	13A	12B	13A	13B	12A	13B	12B	13 B	12 B	13A
Test Date 2	5 April	25 April	26 April	27 April	27 April	28 April	28 April	29 April	29 April	2 Mag
Gatewell	237	124	165	484	172	487	54	360	71	232
First Net	138	108	60	702	165	819	99	756	63	177
Second Net	147	84	126	318	84	342	60	387	90	147
Third Net	102	63	93	114	42	105	33	168	63	138
Fourth Net	60	36	72	84	63	69	27	114	75	99
Fifth Net	48	60	54	48	15	27	24	108	57	84
Sixth Net	42	33	45	42	-	9	18	51	36	72
Seventh Net	21	-	18	12	-	3	6	27	18	36
Totals	795	508	633	1804	541	1861	321	1971	473	985
Test Unit	13A	13A	13A	13A	13A	13A	13A	13A	13A	13A
Test Date	3 May	4 May	5 May	6 May	9 May	10 May	11 May	12 May	13 May	14 May
Gatewell	227	172	254	166	108	63	50	65	71	104
First Net	213	141	237	96	96	57	36	78	66	72
Second Net	180	141	141	135	66	51	33	51	57	105
Third Net	108	111	141	84	60	48	42	39	33	51
Fourth Net	123	108	129	93	60	45	60	51	54	24
Fifth Net	54	81	81	63	33	33	18	30	39	39
Sixth Net	75	45	57	33	18	30	9	6	30	27
Seventh Net	27	12	21	12	9	3	15	3	24	6
Totals	1007	811	1061	682	450	330	263	323	374	428

Appendix Table 2.--Continued.

-	YEAR	RLING CH	INOOK S	ALMON.	COHO SALMON									
Test Unit	13A	13A	13A	13A	13A	13A	13A	13A	13A	13A				
Test Date	15 May	16 May	17 May	18 May	26 May	27 May	28 May	29 May	30 May	31 May				
Gatewell	71	103	38	44	83	61	110	115	53	62				
First Net	66	108	21	33	84	108	156	192	111	120				
Second Net	45	99	48	72	78	81	102	144	87	72				
Third Net	57	54	54	51	27	54	69	93	72	36				
Fourth Net	96	21	45	30	18	42	42	66	69	33				
Fifth Net	45	39	54	30	18	24	51	36	39	24				
Sixth Net	15	21	36	12	12	24	39	48	21	21				
Seventh Net	6	6	6	6	9	3	33	21	24	15				
Totals	401	451	302	278	329	397	602	715	476	383				
	(СОНО	SALMON	a module	no-and an		SUB	YEARLIN	G CHINO	OK SALMON				
Test Unit	13A	13A	13A	13A	13A			13A	13A	13A				
Test Date	l June	2 June	3 June	4 June	5 June			6 July	7 July	8 July				
Gatewell	7	8	16	10	22			354	211	57				
First Net	33	9	12	21	45			348	156	60				
Second Net	36	18	18	12	33			336	150	57				
Third Net	12	6	15	9	21			183	87	27				
Fourth Net	18	15	6	18	24			171	75	24				
Fifth Net	18	15	9	9	9			144	57	27				
Sixth Net	6	9	3	3	3			144	51	21				
Seventh Net	3	6	12	3	-			45	12	3				
Totals	133	86	91	85	157			1725	799	278				

Appendix Table 2.--Continued.

	SUBYEARLING CHINOOK SALMON												
Test Unit	13A	13A	13A	13A	13A	13A	13A	13A	13 A	13A			
Test Date	9 July	ly 10 July	11 July	12 July	13 July	14 July	15 July	16 July	17 Jul	y18 July			
Gatewell	96	110	156	214	157	90	110	86	67	92			
First Net	123	117	144	159	135	198	117	54	42	114			
Second Net	129	168	132	237	153	114	105	72	72	84			
Third Net	39	108	120	228	72	129	96	144	57	114			
Fourth Net	102	159	117	204	120	132	117	186	93	81			
Fifth Net	60	126	69	150	72	96	84	228	54	144			
Sixth Net	78	99	81	147	30	105	99	165	48	114			
Seventh Net	t 39	51	39	60	33	51	33	126	48	48			
Totals	666	938	858	1399	772	915	761	1061	481	791			

Test Unit	13A	13A	13A	13A	13A	13A	13A	13A	13A	13A
Test Date 1	9 July	20 July	21 July	22 July	23 July	24 July	25 July	26 July	27 July	28 July
Gatewell	57	60	68	62	48	55	69	66	38	58
First Net	51	93	75	30	42	36	54	42	36	78
Second Net	75	54	81	48	63	60	72	42	54	111
Third Net	78	60	111	66	63	39	84	63	30	93
Fourth Net	96	84	117	54	105	90	105	93	87	138
Fifth Net	36	54	48	117	99	117	66	96	60	198
Sixth Net	42	48	57	153	120	117	57	72	36	180
Seventh Net	12	21	21	60	69	60	36	54	27	123
Tetels	447	474	578	590	809	574	543	528	368	979

SUBYEARLING CHINOOK SALMON

Appendix Table 2.--Continued.

					SI	BYE	ARLE	IG CE	IINOO	K SA	LMO	N				
Test Unit	13 A	13 A	1	3A	13	BA										
Test Date	30 July	31 July	1 A	ugust	2 Au	igust										
Gatewell	65	20		12		18							-	-		
First Net	75	60		9		6										
Second Net	123	63		18		9										
Third Net	156	27		33	1.	42										
Fourth Net	153	156		30	8	54										
Fifth Net	213	141		27		57										
Sixth Net	195	150		24		66										
Seventh Net	42	69		30	191	36										
Totals	1022	686	ī	83	2	88										
Plans.				_	-		-	-	-	-	-		-	-	-	-

							Da	te (Te	est Un	lit)						
		1	June	(3B)			2	June	(3B)				3	June	(3B)	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO	-	SC	YC	ST	CO	SO
Gatewell	25	9	30	204	3	51	2	17	83	4		25	5	46	89	6
Gap Net	2	1		49	144	9		-	10	1		7	1.000	3	19	1
Closure	7	1	3	37	1	14		2	8	4		6	1	6	14	1
First	3	6	3	12		9		12	12			6		3	21	3
Second	9		3	36		42		6	18	3		15		12	30	9
Third	9		3	15	3	18			6	6		9	-	12	6	6
Fourth	-			6	-	12		-	3	3		3	1 1.77	6	3	-
Totals	55	17	42	359	7	155	2	37	140	21		71	6	88	182	26
		4	June	(3B)			6	June	(3B)							
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO						
Gatewall	26	4	14	26	4	10	8	19	38	-						
Gap Net	1	1	1.4	1	1	19	0	14	8	1						
Closure	1	-	3	6	1	2	-	1	5	1						
First	3	3	6	6		3				6						
Second	6		6	6	3	9	6	3	9							
Third	6	3	6	3	3		3	9	3	6						
Fourth	-		-	3	3	-		-		-						
Totals	43	11	35	51	15	34	17	25	63	16						
		6	July (3 R)			7.1	ula (3)	D)					[11]	D	
Location	SC	YC	ST	CO	SO	SC	YC	ST	CO	SO		SC	YC	ST	CO	SO
Catowall	120	18			1411	100		1			14		1			- 25
Cap Not	11					100						64				
Cloguro	41					19						26				
First	45					54						30				
Second	351					138						225				
Third	381					141						102				
Fourth	276					87						144				
Totals	225					668						724				
Location	SC	13 YC	July	(3 <u>B</u>)	SO	SC	14 YC	July (<u>3B)</u>	50		SC	15 YC	July (<u>3B)</u>	SO
Location	50	10	51	00	50	50	10	51	00	50	_	30	10	31	00	50
Gatewell	46					60						95				
Gap Net	10					13						13				
Closure	20					59						33				
First	18					60						45				
Second	93					255						198				
Third	105					225						264				
Fourth	57					111						150				
Totale	349					783						798				
TOTATS	0.40					100						100				

Appendix Table 3.--Numbers of fish collected in the individual replicates of FGE tests at Bonneville Dam First Powerhouse, 1988 (tests conducted in July and August captured only subyearling chinook salmon).

				Date (Test Unit)											
		18	July (3B)	1 1993-33	Alizatio	19 July (3B)				10086.)	21 July (3B)				
Location	SC	YC	ST CO	SO	SC	YC	ST	ĊO	SO	S	С	YC	ST	CO	SO
Gatewell	46	1.1	1.6	dal at	84	_	-			3	7		-		
Gap Net	3				7						2				
Closure	43				22					4	9				
First	39				21					1	8				
Second	195				105					22	8				
Third	180				165					20	7				
Fourth	63				81					10	5				
Total	569				485					64	6				
Location	SC	YC	ST CO	SO	SC	YC	ST	CO	SO	S	C	YC	ST	CO	SO
			111	312							_				
Gatewell	32				200					4	7				
Gap Net	2				15						6				
Closure	40				91					1	2				
First	18				57					1	2				
Second	171				405					14	7				
Ihird	180				438					38	7				
Fourth	135				267					18	6				
Total	578				1473					79	7				

Appendix Table 3.--Continued.

SC = Subyearling chinook salmon YC = Yearling chinook salmon ST = Steelhead CO = Coho salmon SO = Sockeye salmon

	C	COHO SA	LMON	SUBYEARLING CHINOOK SALMON						
Test Unit	3 B	3	B 3B	3 B	3 B	3 B	3 B			
Test Date	30 Ma	y 31 l	May 5 June	11 July	12 July	20 July	27 July			
Gatewell	16	21	46	19	40	17	9			
First Net	12	123	108	75	162	30	15			
Second Net	9	33	57	57	72	45	33			
Third Net	-	39	21	51	132	114	27			
Fourth Net	6	12	15	111	186	192	126			
Fifth Net	-	6	-	99	156	216	186			
Sixth Net	-	-	3	78	96	120	126			
Seventh Net	-	-	-	9	45	39	24			
Totals	43	234	250	499	889	773	546			

Appendix Table 4.--Vertical distribution data for subyearling chinook and coho salmon, collected at Bonneville Dam First Powerhouse, 1988.